Mycological Notes 26: Draft Key to amyloid-spored group of New Zealand Mycena species and closely allied genera
Jerry Cooper, October 2014

Mycena is a common genus of saprophytic fungi on wood and litter. The species are generally small and rather drab looking but can often dominate when the conditions are right. Whilst many are LBMs (little brown mushrooms) there are some very noticeable species such as the common blue Mycena interrupta, and the bright red and sticky Cruentomycena viscidocruenta. The former has a small related species that is bioluminescent (Mycena ‘Crystal Falls’), whilst the red Cruentomycena viscidocruenta is probably an introduction from Australia. After a long dormancy period from the first records in the 1960’s this species has spread rapidly in recent years across South Island, much like the exotic orange Favolaschia calocera, which is also closely related to Mycena.

In New Zealand, like elsewhere, the genus is diverse. Many of our species are endemic with a number of introduced species in modified habitats, which is a common pattern for New Zealand saprophytic fungi. A number appear to be common between New Zealand and Australia, and a few appear to have a global distribution. This pattern contrasts with ectomycorrhizal fungi where the majority of species are endemic. Many of our species remain without formal names and this account I have given them temporary ‘tag names’.

In compiling this account I have looked at about 300 collections in PDD, fresh material collected on forays, and my own collections. A number of New Zealand species were named in Greta Stevenson’s early accounts in Kew Bulletin (Stevenson, 1964). In many cases these were accompanied by rather brief descriptions and poorly reproduced water colours. I have examined most of the original type collections now housed at Royal Botanic Gardens Kew, and I am indebted to RBGK for the loan of that material. My notes and micrographs on these collections may be found on the NZFUNGI2 website. This exercise was also carried out by Egon Horak in his review of New Zealand agaric species in the 1970’s (Horak, 1971). In many cases I agree with Egon that the original material is too poor for an objective interpretation of those names, and we must consign them to history as nomina confusa. Many collections were based on just a few fruitbodies, and many of these are now very fragmented. A number of promising collections with many fruitbodies appear to have undergone excessive heating and have lost many key microscopic characters. Indeed, a number of Stevenson’s own observations of micro-characters are in error, and perhaps observed after the material was degraded. In addition Stevenson described some species from exotic habitats and Horak dismissed a number of these. Some of those are referable to a single variable exotic species which I equate here with Mycena olivaceomarginata. I have also examined the type collections of Mycena species named by Barbara Segedin (Segedin, 1991). In a number of cases I can find no stable microscopic features to distinguish between species, which together with variability in macromorphology in subsequent collections, and sequencing evidence, suggest a continuum. I therefore currently consider a number of her species to be synonyms and have indicated these in the section on excluded names. Subsequent collections may prove otherwise.

In this preliminary account I have listed 46 species in the genus, but inamyloid species, not treated here, raise that figure, and in fact there are likely around 70-90 species in total which could be enumerated with some additional collecting and diagnostic effort. This figure compares with 66 species from South Australia treated by Grgurinovich (2003), and 72 listed for the UK by Legon and Henrici (2005).
Mycena species have a reputation as being difficult to identify, not helped I believe, by a historical sub-generic classification with very fuzzy boundaries. For the core group of Mycena species the micromorphology of the cap, stipe and lamellar cystidia is critical, and should be examined using Congo Red in Ammonia or under Differential Interference Contrast illumination. I have used both sequences (ITS/LSU) of NZ material and morphology to guide my thinking on the boundaries between species and between clades within Mycena, and to formulate the key. The sequences will be deposited in GenBank when the final revision is published. From this phylogenetic perspective much sampling remains to be done, both in New Zealand and elsewhere. It is also clear that GenBank contains many incorrectly identified entries for European and North American taxa. Nevertheless the phylogenetic signals are quite clear. Most of the inamyloid species around Mycena hiemalis, Mycena acicula and the ‘oregonensis’ group are distant from core Mycena and group rather broadly with Hemimycena and Mycenella. This group does include some amyloid spored species like Mycena sp. ‘Duffy Creek’ and Mycena papillata. M. acicula and allies are much more closely related to the recently erected Atheniella, and in my opinion the group as a whole (which includes some cyphelloid genera and our Scytinotis longinquus) is worthy of separate recognition at family level.

A number of species within Hydropus, Clitocybula and Delicatula (now treated within the porotheliaceae) are mycenoid and pose amyloid spores. Hydropus funebris in particular looks like a typical Mycena until the micro-characters are examined.

Hemiomyces and Xeromphalina are likewise somewhat mycenoid and possess amyloid spores, and are in fact closely related to Mycena but have been excluded from this treatment.

Excluding these groups leaves the remainder treated here. All representatives in New Zealand possess amyloid spores, although in general some species elsewhere in the world, for example in Prunulus, possess inamyloid spores.

Favolaschia and Panellus lie on the outer boundary of the core mycenoid group and rather easily recognised from gross morphological features. Phylogenies indicate a clustering of related genera including Cruentomycena, Resinomycena and Roridomyces, and once again it is reasonable to recognise these genera on gross morphology.

The ‘picta group’ which includes our Mycena mamaku and M. ‘Erua’ is clearly both morphologically and phylogenetically distinct from core Mycena.

Moving closer to core Mycena we come next to groups that share the characteristic of a basal disk or bulb, and sometimes blue colouration (Sacchariferae, Basipedes, Cyanocephalae). In my opinion these should be separated at generic rank.

Closer still we come to the Calodontes section which contains the northern hemisphere M. pura and allies, and which generally have a purple colouration and raphanoid smell. This group is clearly monophyletic and requires separate recognition under the generic name Prunulus.

Now we arrive at clades which may or may not be treated as congeneric with Mycena, and more sampling is required. This boundary group includes species like Mycena leiana var. australia, M. stevensoniae, M. ‘Croydon Bush’, M. helminthobasis var. novaezelandiae and Mycena subviscosa. The latter is a very variable species in New Zealand and can have colouration ranging from all tan to bright yellow, but sequences indicate a single species. The group as a whole possesses gelatinised tissue and a gill edge that is usually separable as an elastic thread. Mycena subviscosa is part of the
northern hemisphere Mycena epipterygia group, and has been treated under the generic name *Collopus*. My personal preference is to once again separate this group at the generic level.

The next clade contains the bleeding mycenas, which in New Zealand are represented by the introduced *M. sanguinolenta* and our own *M. ura, M. mariae, M. parsonsii*, and *M. morrisjonesii*. Even without sap the species are recognised by characteristically awl-shaped cystidia, and often subglobose spores. Once again a generic name is available, *Galactopus*, should these be considered worthy of recognition at generic rank. At this point my personal opinion is divided and I can see arguments both for retention of a broad concept of *Mycena*, and a narrower one.

Mycena roseoflava, which is a very common small species on rotten wood seggregates with a number of species placed in section supinae. *M. roseoflava* has been placed in the genus *Insiticia* but that is not an appropriate genus (type *M. amicta*).

The remaining species are without question congeneric with *Mycena galericulata*, the type of *Mycena*. The clade contains species placed in a number of classical sections such as filipedes, fragilipdes, polyadelpha, mycena etc. More sampling is required to establish the validity and boundary of these sections. In New Zealand the group contains a number of very similar looking species and microscopy (sometimes painstaking) is required to separate the species. Many northern hemisphere species within these groups require lecto/epitypification to stabilise and clarify the use of names.

I emphasize that this is a preliminary exercise, largely to order my own thoughts and notes. I will amend and expand the treatment as more information comes to light, and eventually I will publish a formal revision with new species descriptions. In the meantime I am waiting for our northern hemisphere colleagues to sort out acceptable generic boundaries and verified species sequences within the group.

References

Cooper, J.A. Studies of New Zealand agaric type collections not deposited in PDD; 2014; (unpub) NZFUNGI2

Grgurinovich, C. 2003: Genus Mycena in South-eastern Australia

Legon, N.W.; Henrici, A.; Roberts, P.J.; Spooner, B.M. 2005: Checklist of British and Irish Basidiomycota

The key

1 cap with pores (key after Johnston, 2006) 2

1’ cap with gills 6

2 Basidiocarps orange; acanthocysts and orange gloeocystidia present on pileus surface and pore edges; basidia 2-spored Favolaschia calocera (1)

2’ Basidiocarps white; acanthocysts absent, gloeocystidia absent or hyaline; basidia 4-spored 3

3 Basidiocarps on fallen wood, 5–85 mm diam., solid with thick flesh F. pustulosa(2)

3’ Basidiocarps on dead tree fern fronds or decaying leaves of monocotyledons, 0.9–10 mm diam., delicate with thin flesh 4

4 Basidiocarps on monocotyledons, 0.9–5 mm diam.; edges of pores with broad-clavate cells; pileipellis with diverticulate hyphae. Panellus minimus (3)

4’ Basidiocarps on tree fern fronds, 2.5–10 mm diam.; pileipellis without diverticulate hyphae 5

5 Basidiocarps with powdery appearance when dry, pileipellis and edge of pores with cylindric, free hyphae F. cyatheae (4)

5’ Basidiocarps glabrous when dry, pileipellis and edge of pores lacking free hyphae F. austrocyatheae (5)

6 lateral stemmed and/or pleurotoid [Panellus] 7

6’ central stemmed 8

7 cap > 1cm, brown, edge not crenulate. P. stypticus (6)

7’ cap < 1cm, cream, edge crenulate, P. ‘montgommery park’ (7)

8 cap like upturned bucket, pleated, orange or red and associated with tree ferns 10

8’ cap otherwise 11

10 cap orange, height > diameter Mycena ‘Erua’ (8)

10’ cap brick red, height = diameter M. mamaku (9)

11 stem very glutinous, stem cream or scarlet, cap white, tan or scarlet, but not yellow, orange, pink or green. 12

11’ if stem glutinous then with some shade of yellow/green, otherwise various 14

12 cap pure white Roridomyces ‘sugarloaf’ (10)

12’ cap with some pigment, at least when immature 13

13 scarlet coloured. Cruentomycena viscidoscruenta (11)

13’ cap cream, with furfuraceous tan granules when young. M. austrororida (12)

14 With basal disk or arising from a bulb (perhaps not obvious in yellow/green capped M. flavoviens) [sacchariferae & basipedes] 15

14’ without basal disk 25
15 primordia grey, with spines M. ‘mt grey’ (13)
15’ primordia not spinulose 16
16 basal disk orange, cap cream M. carmeliana (14)
16’ basal disk blue or drab 17
17 cap with yellow and green M. flavovirens (15)
17’ cap with other colours 18
18 cap and stem base with strong or faint blue/green colours 19
18’ cap and stem without blue colours 21
19 cap spherical/hemispherical, pleated, colours fading in maturity M. globuliformis (16) (see also Gypsy Glen)
19’ cap not spherical/hemispherical 20
20 Stem <= 3 x cap diameter, usually indigenous habitat. M. interrupta (17)
20’ stem > 4 x cap diameter, usually exotic habitat. M. amicta (18)
21 cap > 1 cm diam. Grey in cap centre and smell of hypochlorite M. jac13315 (19)
21’ cap < 1 cm at maturity 22
22 stem >=7 x cap diameter 23
22’ stem < 7 x cap diameter 24
23 cheilocystidia with short diverticulae and longer apical extension M. ascendens (20)
23’ cheilocystidia with just short diverticulae M. subdebilis & ‘M. rotokuru lakes’ (21,22)
24 cap not pure white, without collarium, cap with vermiform diverticulae (if spores inamyloid then M. bulbosa) M. ‘gypsy glen’ (23)
24’ cap pure white, with collarium M. ‘crystal falls’ (24,25) (two versions!)
25 stem base > 3 mm diam, smell none, farinaceous or raphanoid, with purple-violet-red-pink hues, nowhere gelatinised and without latex [Prunulus] 26
25’ without this combination 30
26 without distinct smell (and not Prunulus) M. ‘rangitaiki’ (26)
26’ smell farinaceous or raphanoid 27
27 with red or brown gill edge 29
27’ gill edge concolorous, cheilocystidia cylindrical (if acuminated see jac10764) 28
28 spores < 7.8 um long, Q < 1.8 M. fuscovinacea (27)
28’ spores > 7.8um long, Q > 1.8 M. vinacea (28)
29 basidia with red granules (brown in KOH) M. rubroglobulosa (29)
basidia without red granules. M. oratiensis pink, lividorubra dark. M. lividorubra & M. oratiensis (30,31)

cap or stipe viscid or glutinous, stem white, pink or shades of yellow [Collopus pp] 31

cap and stem not viscid or glutinous, or if viscid then not white, pink or yellow 35

gills bright orange M. leaiana var australis (32)

gills not bright orange 32

small frb, stem and cap pink, on bleached patches of beech leaves (if on wood see M. roseoflava). M. stevensoniae (33)

frb not pink 33

stem or cap with some shade of yellow, gills with separable thread on gill edge, variable in colour from complete yeallow to near complete tan/cream. M. subviscosa (34)

stem white, gills decurrent, cap flattening to umbilicate in centre 34

cap brown striate, stem very long, gills discoloring red when bruised. M. helmnthobasis var nz (35)

cap cream/tan, gills not discoloring M. ‘croydon bush’ (36)

broken stem exuding obvious latex, either red or white (not just clear ‘sap’). Always with awl-shaped cystidia, even if latex not obvious [Gabactopus]. 36

no coloured latex 41

cap cream to tan, latex white or? 37

cap with red hues, latex red/brown 38

latex white, spores globose M. galopus aff (37)

latex absent (or not?), spores broadly ellipsoid M. morrisjonesii (38)

in pine plantations M. sanguinolenta (39)

indigenous habitats 39

Frb bright red, tiny, leaf litter M. ura (40)

frb dull red or pink, larger 40

dull red, spores ellipsoid, leaf litter M. mariae (41)

pinkish tan, spores subglobe, wood M. parsonsii (42)

stem often eccentric, small, imbricate on wood, some shade of yellow/pink, but fading M. roseoflava (43)

no pink colors 42

cap contrasting dark brown/pale brown stripes, viscid when wet, cheilocystidia with irregular fingers, not metuloid (see also M. leptocephala, atroavellanca cf, and M. morris-jonesii) M. ‘ahurri’ (44)

cap without sharply contrasting stripes 43

exotic habitats and gills with contrasting gill edge colour: yellow, green, red 44
43’ gills without contrasting coloured edge and natural habitats 45
44 frb in grass, lawns, introduced habitats, gill edge green or yellow M. olivaceomarginata (45)
44’ frb in pine needles, gill edge red/brown, no red sap/latex M. capillaripes (46)
45 frb tan, plicate, strongly decurrent gilles, cap diameter <= stem length M. JAC1021 (47)
45’ not these characters 46
46 with metuloid cystidia (see also M. barracouta and H. funebris) 47
46’ without metuloid cystida 48
47 sterile stipes often present, stipes long relative to cap, cap perimeter pale, darkening to centre (a red variety also known) M. cystidiosa (48)
47’ sterile stipes absent, stipe thicker and shorter relative to cap, cap tan/brown from perimeter to centre. M. atroavellanea cf. (49)
48 on litter, cheilocystidia sphaeropedunculate, with apical diverticulae, 2-spored (4-spored see JAC13019) 49
48’ on wood, 2-4 spored, c heilocystidia not sphaeropedunculate 51
49 cheilocystidia with long stem, up to 70um long x 40um diameter. M. metata (50)
49’ cheilocystidia without long stem 50
50 cheilocystidia up to 50um long x 25um diameter M. filopes. M. filopes aff (51,52)
50’ cheilocystidia up to 30 long x 30 um diameter M. austrofilopes (53)
51 on thin branches, and twigs, cheilocystidia without diverticulae, caulocystidia often inflated M. leptoccephala (54)
51’ on stumps and logs 52
52 cheilocystidia with diverticulae, stipe without inflated caulocystidia, but with short diverticulae. M. galericulata (55)
52’ cheilocystidia cylindrical, sometimes slightly thick walled, stipesurface ? M. ‘barracouta’ (56)
<table>
<thead>
<tr>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favolaschia calocera -1</td>
</tr>
<tr>
<td>Favolaschia pustulosa -2</td>
</tr>
<tr>
<td>5-85mm diameter cap</td>
</tr>
<tr>
<td>Panellus minimus – 3</td>
</tr>
<tr>
<td>Scale = 1mm</td>
</tr>
<tr>
<td>Favolaschia cyathea – 4</td>
</tr>
<tr>
<td>Favolaschia austrocyathea – 5</td>
</tr>
<tr>
<td>No image</td>
</tr>
</tbody>
</table>
Panellus stypticus – 6

| ![Image](image1.jpg) |

Panellus/Resinomycena sp. ‘Montgommery Park’ - 7

Cap to 5mm diameter. Resinomycena sp. 'Waiohine Gorge (PDD87405)' might be the same.
Mycena sp. ‘Erua’ – 8
Cap to 5mm

Mycena mamaku – 9

Roridomyces sp. ‘Sugarloaf’ – 10
Scale = 2mm
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruentomyces viscidocruenta - 11</td>
<td></td>
</tr>
<tr>
<td>Mycena australoridia – 12</td>
<td></td>
</tr>
<tr>
<td>Mycena sp. ‘Mt Grey’ – 13</td>
<td>![Image]</td>
</tr>
<tr>
<td>Scale = 1mm</td>
<td></td>
</tr>
</tbody>
</table>

| **Mycena carmeliana – 14** | ![Image] |
| Scale=5mm |

| **Mycena flavovirens – 15** | ![Image] |
| Cap to 1cm |

| **Mycena globuliformis – 16** | ![Image] |
| Pic Pat Leonard. Cap to 14mm |

| **FUNNZ2013/643** |
Mycena interrupta – 17
Cp to 16mm diam.
Mycena amicta – 18
Cap 8-15 mm. Stem 1-2 x 40-70 mm

Mycena JAC1315 - 19

Mycena adscendens – 20
Only from BCP sequence. Pic Fungi Switz. Cap 1.5-5 mm. Stem 0.2-0.5 x 4-14mm.
Cheilocystidia
Mycena subdebilis – 21

Cheilocystidia

Mycena sp. ‘rotokuru lakes’ - 22

Mycena sp. ‘gypsy glen’ – 23

Note that a fungus like this from monocots in damp habitats and with inamyloid spores is *M. bulbosa* and confirmed as present in NZ.

Cap diverticulae
Mycena sp. ‘crystal falls’ ss – 24
Luminescent

Mycena sp. ‘crystal falls’ cf – 25
Requires characterisation

Mycena sp. ‘rangitaiki’ – 26
Not a Prunulus but related to M. ‘ahuriri’ and placed here in the key for convenience
Mycena fuscovinacea – 27

Spores

Mycena vinacea – 28

Spores

Mycena rubroglobulosa – 29

Basidia with globules
<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycena lividorubra</td>
<td>30</td>
</tr>
<tr>
<td>Mycena oratiensis</td>
<td>31</td>
</tr>
<tr>
<td>Mycena leaiana var. australis</td>
<td>31</td>
</tr>
<tr>
<td>Mycena stevensoniae</td>
<td>33</td>
</tr>
</tbody>
</table>
Mycena subviscosa – 34

This species is very variable

Mycena helminthobasis var. novae-zelandiae - 35
<table>
<thead>
<tr>
<th>Mycena sp. 'Croydon Bush' – 36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mycena galopus aff – 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spores and cystidia</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mycena morrisjonesii – 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystidia and spores</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Mycena sanguinolenta – 39

Spores and cystidia

Mycena ura – 40

Mycena mariae – 41

Cystidia and spores

An undescribed species will key here. It has a hemispherical cap and pink/red striate cap.
<table>
<thead>
<tr>
<th>Mycena parsonsii – 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystidia and spores</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mycena roseoflava – 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sale = 2mm</td>
</tr>
</tbody>
</table>

| **Mycena sp. ’Ahuriri Reserve’** – 44 |
Mycena olivaceomarginata – 45

I am using this name in a broad sense that may include *M. citrinomarginata*. Current sequences and characters are not definitive.

Mycena capillaripes – 46

Cheilocystidia and spores

Mycena jac10021 - 47
Mycena atrovellanae cf – 49

Spores, cystidia

Mycena metata – 50

Cheilocystidia and spores
<table>
<thead>
<tr>
<th>Mycena filopes – 51</th>
<th>Mycena austrofilopes – 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheilocystidia and spores</td>
<td>Cheilocystidia and spores</td>
</tr>
</tbody>
</table>

No image
<table>
<thead>
<tr>
<th>Mycena leptocephala – 54</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheilocystidia and spores</td>
<td></td>
</tr>
</tbody>
</table>

| **Mycena galericulata – 55** |
|-----------------------------|------------------------------|
| **Pic Horak** | ![Mycena galericulata](image3) |
| Cheilocystidia and spores | ![Mycena galericulata spores](image4) |

<table>
<thead>
<tr>
<th>Mycena sp. ‘barracouta’ – 56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Cheilocystidia and spores</td>
</tr>
<tr>
<td>Insufficiently characterised</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>jac11993</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Jac9225</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Jac11580</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Excluded and comments

Mycena abramsii – recorded in error

Mycena aetites – records require confirmation

Mycena alba – records require confirmation

Mycena alcalina – recorded in error

Mycena atrocyanea – sensu Colenos is an *Entoloma*.

Mycena atroincrustata – Sensu NZ is probably *M. ‘ahurriri’*

Mycena austroavenacea - NZ material identical to *M. lividorubra* and *M. podocarpi*. Equivalence with South American material possible but unlikley. Segedin's species are section calodontes and not rubromarginatae sensu northern hemisphere.

Mycena austromaculata – recorded in error

Mycena avellanea – recorded in error

Mycena avenacea – sensu Stevenson is *M. olivaceomarginata*

Mycena bulbosa – present – see M. ‘Gypsy Glen’

Mycena capillaris – name used in error for capillaripes

Mycena citrinomarginata – sequences indicate overlap/confusion with *M. olivaceomarginata*.

Mycena conicola – is *Mycena filopes*

Mycena epipterygia – all records of tis and related species are referable to *M. subviscosa*.

Mycena hiemalis – inamyloid species

Mycena hygrophora – the original description and type material is inadequate. A nom. conf.

Mycena inclinata – recorded in error

Mycena kuramulla – records require confirmation

Mycena lactea – inamyloid spores

Mycena minirubra – is Cruentomycena viscidocruenta

Mycena mucor – recorded in error. See the M. subdebilis group.

Mycena munyozii – records require confirmation

Mycena papillata – sensu Stevenson = M. ‘waiohine Gorge’, inamyloid spored

Mycena parabolica – sensu Stevenson = M. ‘ahurriri’

Mycena pelianthina – recorded in error, see vinacea/fuscovinacea

Mycena pinicola – is Mycea vinacea

Mycena podocarpi – in my opinion is identical to M. lividorubra

Mycena polygramma – recorded in error

Mycena primulina – a Hemimycena

Mycena pura - recorded in error. see vinacea/fuscovinacea

Mycena simia – an error for the variable M. subviscosa

Mycena stylobates – recorded in error. See M. subdebilis and allies.

Mycena thymicola – recorded in error. See M. capillaripes.

Mycena vinaceipora - in my opinion is identical to M. lividorubra